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In this paper the transport of quantum particles in time-dependent random media is
studied. In the white noise limit, a quantum model for collisions is obtained. At the
level of Wigner equation, this limit is described by a linear Wigner-Boltzmann equation.

Nous étudions dans cet article le transport de particules quantiques dans un milieu
aléatoire dépendant du temps. Dans la limite de bruit blanc, nous obtenons un modèle
quantique de collison. Au niveau des équations de Wigner, la limite est donnée par une
équation de Wigner-Boltzmann linéaire.
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1. INTRODUCTION

In this paper we investigate the asymptotic behavior of quantum particles
dynamics in a random media. The random media is modeled by a random potential
V τ

t (x) which is time dependent. The small parameter τ represents the correlation
time: V τ

t (x), V τ
s (y) are independent random variables as soon as |t − s| ≥ τ .

Therefore the limit τ → 0 corresponds to a white noise limit. The amplitude of
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the potential is of order 1/
√

τ . We will prove that, starting from the classical
Schrödinger picture to describe the evolution of quantum particles, the correlation
time limit τ → 0 describes a Wigner-Boltzmann equation. This kind of problems
belongs to the class of rigorous derivations of an irreversible dynamics from a
reversible one. The effect of the scaling analyzed in this paper is that the random
potential acts very strongly and, as a consequence, the process is very close
to a Markovian dynamics with instantaneous generator. It could be possible to
combine the whith noise limit introduced by the scaled random potential with
the homogeneization given by the semiclassical limit, where the memory of the
random potential is comparable with the full time scale. In our opinion, one of the
advantages of doing the white noise limit is that we can recover the quantum effect
in the Schrödinger formalism (we obtain a quantum Boltzmann-like equation in
the Wigner formalism), while in combination with the semiclassical limit we find
the classical description. Of course, the semiclassical analysis could be done in a
second step. In the context of radiative transport theory (see (7,23), one of the main
applications of this procedure is to study quantum effects in the description of the
propagation of wave energy in scattering medium. Let us briefly summarize some
contributions to the literature on this field.

H. Spohn derived in(25) the spatially homogeneous radiative transport
equation starting from the Schrödinger equation for short times, for electrons
moving through random impurities modeled by time-independent Gaussian
potential. This result was generalized to higher-order correlation functions by T.
Ho, L. Landau and A. Wilkins in.(18) In(14), the small time restriction was removed
and the result was extended to more general initial data by L. Erdös and H. T. Yau,
where the potential had no loss of memory. The above results can be considered in
the framework of the weak coupling limit (see also(13)), but in(14) it is also analyzed
the so-called low-density limit, which is the quantum analogue of the classical
Lorentz gas. In the above results the proofs are mainly based on Neumann’s series
expansion for the solutions of the Schrödinger equation. In(3) time-dependent
random potentials modeled by a Markov process in time are considered. Then,
G. Bal, G. Papanicolaou and L. Ryzhik performed the radiative transport limit
by constructing an approximate martingale for the random Wigner distribution,
where the time scale of the memory of the random potential was comparable with
the full time scale. F. Poupaud and A. Vasseur in(24) dealt with the same problem
with rapidly decorrelating in time potential in combination with the semiclassical
limit. The effective equation obtained in those papers is a classical linear
Boltzmann equation. Our aim in this paper is different, while the techniques are
close to those of.(24) We want to obtain a model for collisions at the quantum level
starting from classical Schrödinger equations. We follow the general mathematical
approach of.(24) In particular, the limit is performed directly on the equation and
not on an explicit representation of the solution. The stochasticity in time of
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the potential automatically implies the non self-correlation of particles paths. In
(9,10), a non-commutative version of the entropy extremalization principle allows
to construct new quantum hydrodynamic models founded in the moment method.
The moment system is closed by a quantum (Wigner) distribution function which
minimizes the entropy subject to the constraint that its moments are given and the
resulting moment system involves nonlocal operators. In (11) P. Degond and C.
Ringhofer generalize the previous results to the Boltzmann collision operator us-
ing nonlocal quantum entropy principles.The problem of finding diffusion models
in quantum transport can be also considered in this context and plays an important
role in a wide range of applications from which we mention the microelectronic
devices. The motion of an ensemble of quantum particles interacting with a heat
bath of oscillators in thermal equilibrium was modeled by A. O. Caldeira and A.
J. Legget in (5), see also (12). For open quantum systems, the analysis of dissipative
transport equations with Fokker–Planck–type scattering mechanism was done in
(1) by A. Arnold, J. L. López, P. A. Markowich and J. Soler in the Wigner function
formalism (26) (level of the kinetic equation), see also (6). At the level of the density
operator the same problem has been recently studied by A. Arnold and C. Sparber
in (2) and by J. L. López in (21) in the setting of (logarithmic) Schrödinger systems.

All the dissipative quantum models studied in the previous citations rely on
a priori assumptions or principles. On the contrary, in this work, we start from
Schrödinger equations and we rigorously derive a Wigner-Boltzmann equation,
thus obtaining a dissipative quantum model.

The paper is structured as follows: In Section 2 we analyze the main features
of the random potential leading to the white noise limit and to the quantum
transport equations. Section 3 is devoted to deduce the Schrödinger and the Wigner
equations as function of the correlation time parameter. In Section 4 we perform
the white noise asymptotic limit and introduce the main results of this paper. We
also discuss the simpler case in which the correlation of the random potential
depends only on one variable. The conservation of the positiveness for the density
matrix is analyzed. Finally, Section 5 concerns the proofs of the results obtained
in the previous sections.

2. THE RANDOM POTENTIAL

At the quantum level, the dynamics of particles is governed by a potential
V τ (t, x) which is assumed to be a real function of time and space variables
(t, x) ∈ R

1+D , where D is the space dimension. It is for instance the sum of a
potential due to an applied bias and of a random potential due to inhomogenity of
the media (impurities or phonons in a semiconductor for instance). More precisely,
we suppose that the potential has the following form

V τ (t, x) = V (t, x) + U τ (t, x), with
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U τ (t, x) = 1√
τ

U

(
t

τ
, x

)
, ∀(t, x) ∈ R

1+D, (1)

where V is a measurable deterministic function (actually the expectation of V τ )
and U is a measurable random function. The assumptions on these functions are
listed below.

• There is some positive constant C∞ such that

|V (t, x)| ≤ C∞, |U (t, x)| ≤ C∞ almost surely,∀(t, x) ∈ R
1+D. (2)

• The expectation of the random potential vanishes,

E(U (t, x)) = 0, ∀(t, x) ∈ R
1+D. (3)

• We have the following Markov property

U (t, x), U (s, y) are independent random variables (4)

for all t, s ∈ R such that |t − s| ≥ 1.
• We also impose that the random function U is stationary with respect to

time. It means that there is a measurable bounded function R = R(t, x, y)
such that

E(U (t, x)U (s, y)) = R(t − s, x, y),∀(t, x) ∈ R
1+D, ∀(s, y) ∈ R

1+D.

(5)

We remark that due to the Markov property (4) and to (3), the support of R lies in
[−1, 1] × R

2D . We also have that R verifies : R(t, x, y) = R(−t, y, x). It allows
to define the symmetric, bounded, real function

S(x, y) =
∫ 1

−1
R(t, x, y) dt =

∫
R

R(t, x, y) dt. (6)

We need some regularity assumptions on R. Indeed, we shall assume that R̂ is a
measure satisfying∫

R

∫
R2D

|R̂(t, p, q)| |q| (1 + |q| + |p|) dp dq dt ≤ C (7)

for some constant C > 0, where

R̂(t, p, q) =
∫

RD×RD

R(t, x, y) e−i(p·x+q·y) dp dq.

A particular case is when the random potential is also stationary with respect to
space. In this case we have for a measurable bounded function Q = Q(t, x)

E(U (t, x)U (s, y)) = Q(t − s, x − y), ∀(t, x) ∈ R
1+D, ∀(s, y) ∈ R

1+D. (8)
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Then R̂(t, p, q) = (2π )D Q̂(t, p) δ(q + p) and assumption (7) is reduced to∫
R

∫
RD

|Q̂(t, p)| |p| (1 + |p|) dp dt ≤ C. (9)

3. SCHRÖDINGER AND WIGNER EQUATIONS

This Section is concerned with the asymptotic behavior when τ → 0 of the
solutions of the following (normalized) Schrödinger equations

i
∂

∂t
ψτ

n = −1

2
�xψ

τ
n + V τ (t, x)ψτ

n , t ∈ R, x ∈ R
D, n = 1, 2, . . . (10)

ψτ
n (0, x) = ψ I

n (x), x ∈ R
D, n = 1, 2, . . . (11)

Here, the random potential V τ satisfies the hypotheses of the previous Section and
τ is a small parameter which represents the correlation time of V τ .

We use the mixed state approach. The initial data are assumed to form an
orthonormal system of L2(RD). It classically results that for all time t ∈ R, the
system (ψτ

n (t))n=1,2,... is also orthonormal∫
RD

ψτ
n (t, x) ψτ

m(t, x) dx = δnm, (12)

for t ∈ R, and n, m = 1, 2, ... where δnm stands for the Kronecker delta symbol.
To each index n there corresponds an occupation probability λn , while the state of
the particle is described by the wave function ψτ

n . We assume that

λn ≥ 0,

∞∑
n=1

λn = 1. (13)

As in (20), we introduce the time-dependent Wigner function associated with
the mixed state

wτ (t, x, ξ ) =
∞∑

n=1

λn
1

(2π )D

∫
RD

ψτ
n

(
t, x + y

2

)
ψτ

n

(
t, x − y

2

)
e−iy.ξ dy (14)

and the initial Wigner function

w I (x, ξ ) =
∞∑

n=1

λn
1

(2π )D

∫
RD

ψ I
n

(
x + y

2

)
ψ I

n

(
x − y

2

)
e−iy.ξ dy. (15)

We refer to (15,16,22,20) for properties of Wigner functions. We only emphasize that
the weak limit of wτ allows to determine the limit of observables of quantum
mechanics. We have (see (16), for instance)
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Proposition 3.1. Assume that the functions ψτ
n solve (10), (11) with initial data

that form an orthonormal system. Then, the Wigner functions wτ (τ > 0) defined
by (14) with occupation probabilities satisfying (13) are real functions. Also, they
lie in a bounded set of L∞(R; L2(R2D))

‖wτ (t)‖L2(R2D ) ≤
√

C0, ∀τ > 0, ∀t ∈ R, almost surely, (16)

with C0 =
∑∞

n=1
λn

2. The probability density defined by

nτ (t, x) =
∞∑

n=1

λn|ψτ
n (t, x)|2 =

∫
RD

wτ (t, x, ξ ) dξ (17)

is bounded in L∞(R; L1(RD)).

In order to derive the evolution equation satisfied by the Wigner function, we
need to introduce the following pseudo-differential operators. For a given bounded
measurable function 	, we define the operator

θ [	] = i

(
	

(
x + Dξ

2

)
− 	

(
x − Dξ

2

))
. (18)

This operator is explicitly given by

θ [	](η) := i

(2π )D

∫
RD

(
	

(
t, x + y

2

)
− 	

(
t, x − y

2

))
Fv→y(η(x, v)) eiy.ξ dy,

where Fv→y is the Fourier transform between the dual variables v and y

Fv→y(η(v)) :=
∫

RD

η(v) e−iv.y dv.

This operator is bounded on L2(RD). Its norm in the space L(L2(RD)) of linear
operators on L2, denoted by |||θ [	]|||, is bounded by 2‖	‖L∞(RD ).

We introduce

θτ
t := θ [V τ (t)] = i

(
V τ

(
t, x + Dξ

2

)
− V τ

(
t, x − Dξ

2

))
. (19)

Thanks to (2), its norm is bounded by

|||θτ
t ||| ≤ 2 ‖V τ‖L∞(RD+1) ≤ 2 C∞

(
1 + 1√

τ

)
. (20)

If Vτ
t denotes the Fourier transform of U τ (t) with respect to the space variable (it

is a tempered distribution) we obtain

θ [U τ (t)](η) = i

(2π )D

∫
RD

Vτ
t (p)

(
η

(
x, ξ + p

2

)
− η

(
x, ξ − p

2

))
eix ·p dp.

(21)
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In the above formula the integral has to be understood as a duality between a
distribution and a function. The expectation E(Vτ

t (p) Vτ
s (q)), which will be useful

in the next section, can be obtained from the following computation

E(Vτ
t (p) Vτ

s (q)) = Fx→pFy→qE(U τ (t, x)U τ (s, y))

= 1

τ
Fx→pFy→q R

(
t − s

τ
, x, y

)
= 1

τ
(2π )D R̂

(
t − s

τ
, p, q

)
. (22)

This result can be deduced by using (5) and defining R̂(t, p, q) = Fx→pFy→q

R(t, x, y). Note that R̂ verifies R̂(t, p, q) = R̂(−t, q, p). We now introduce the
Wigner equation. We have (see (22,20,16))

Proposition 3.2. Under the same hypotheses as in Proposition 3.1, the Wigner
functions wτ solve the following Wigner equation

∂

∂t
wτ + ξ.∇xw

τ = θτ
t (wτ ), t ∈ R, x ∈ R

D, ξ ∈ R
D, (23)

wτ (0, x, ξ ) = w I (x, ξ ), x ∈ R
D, ξ ∈ R

D, (24)

where the operator θτ
t is defined by (19). For all time t ∈ R, θτ

t is a bounded skew
operator on L2(R2D) which satisfies (20).

4. WHITE NOISE LIMIT

The aim of this Section is to determine the asymptotic behavior of the expec-
tation value E(wτ ) when τ → 0. Our main result is the following

Theorem 4.1. Assume that the random potential satisfies the assumptions of
Section 2. Also assume that the functions ψτ

n solve (10), (11) with initial data
which form an orthonormal system. Suppose that the occupation probabilities
satisfy (13) and that the initial data ψ I

n are deterministic.
Then, when the parameter τ → 0 we have

E(wτ ) → w0 in C0([0, T ]; L2(R2D) − weak), for any T > 0.

We also have w0(t = 0) = w I where w I is defined by (15). Moreover, w0 is the
solution of the following Wigner–Boltzmann equation

∂

∂t
w0(t, x, ξ ) + ξ.∇xw

0(t, x, ξ ) = θ [V (t)](w0) (t, x, ξ )

−
∫

RD

K1(x, ξ ′ − ξ )w0(t, x, ξ ′) dξ ′ +
∫

RD

K2(x, ξ ′ − ξ ) w0(t, x, ξ ′) dξ ′ (25)
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for t > 0 and (x, ξ ) ∈ R
2D, where

K1(x, p) =
∫

RD

S

(
x + x ′

2
, x + x ′

2

)
cos(p · x ′) dx ′ , (26)

K2(x, p) =
∫

RD

S

(
x − x ′

2
, x + x ′

2

)
cos(p · x ′) dx ′ (27)

and S is defined by (6). In the particular case where the potential is stationary
with respect to space, see (8), equation (25) reads

∂

∂t
w0(t, x, ξ ) + ξ.∇xw

0(t, x, ξ ) = θ [V (t)](w0)(t, x, ξ ) − � w0(t, x, ξ )

+
∫

RD

k(ξ ′ − ξ )w0(t, x, ξ ′) dξ ′ (28)

for t > 0 and (x, ξ ) ∈ R
2D, where

k(p) =
∫

RD

∫
R

Q(σ, x)e−i p·x dσ dx ≥ 0,

� = (2π )D
∫

RD

k(p) dp =
∫

R

Q(σ, 0) dσ,

where Q is defined by (8).

The above equation makes the operator

η �→ L(η) : ξ →
∫

RD

k(ξ ′ − ξ )η(ξ ′) dξ ′ − �η(ξ )

=
∫

RD

k(ξ ′ − ξ )(η(ξ ′) − η(ξ )) dξ ′

to appear. This operator can be seen as a linear Boltzmann operator because k is
nonnegative. In particular it is dissipative for the L2-norm because

∀η ∈ L2(RD),
∫

RD

L(η)(ξ ) η(ξ ) dξ

= −1

2

∫
R2D

k(ξ ′ − ξ ) (η(ξ ′) − η(ξ ))2 dξ ′ dξ ≤ 0.

Indeed, with the notation of (24), we have k(p) = 2πR(0, p), so it results from
Lemma 4.5 of (24) that k is even, nonnegative and continuous. Thus, (28) can be
seen as a quantum Boltzmann equation.

This interpretation is less obvious in the case of equation (25). It appears
more clearly in the equivalent formulation in terms of the density matrix. The
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density matrix Dτ is a self–adjoint, nonnegative, time dependent operator which
acts on L2(RD). The integral kernel of this operator reads

ρτ (t, x, y) =
∞∑

n=1

λnψ
τ
n (t, x) ψτ

n (t, y). (29)

The kernel ρτ is related to the Wigner function by the identities

wτ (t, x, ξ ) = 1

(2π )D

∫
RD

ρτ (t, x − y/2, x + y/2)eiy.ξ dy

and

ρτ (t, x, y) =
∫

RD

wτ

(
t,

x + y

2
, ξ

)
e−i(y−x).ξ dξ. (30)

Remark that we have ‖ρτ‖ =
√

(2π )D‖wτ‖. Then, Theorem 4.1 implies that

E(ρτ ) → ρ0 in C0([0, T ]; L2(R2D) − weak), for any T > 0.

We now use the relation between the Wigner transform and the density matrix in
the Wigner equation to deduce that ρ0 is the solution of

i
∂

∂t
ρ0(t, x, y) =

[
−1

2
� + V (t), ρ0(t)

]
(x, y)

− i

2
(S(x, x) + S(y, y) − 2S(x, y)) ρ0(t, x, y), (31)

where [A, B] := AB − B A denotes the commutator of the operators A, B and
S is defined in (6). The main difficulty in deriving (31) comes from the terms
involving the kernels K1 and K2. More precisely, a short computation shows that∫

RD×RD

K1

(
x + y

2
, ξ ′ − ξ

)
w

(
x + y

2
, ξ ′

)
e−i(y−x)·ξ dξ dξ ′

= 1

2
(S(x, x) + S(y, y)) ρ(x, y)

and ∫
RD×RD

K2

(
x + y

2
, ξ ′ − ξ

)
w

(
x + y

2
, ξ ′

)
e−i(y−x)·ξ dξ dξ ′

= S(x, y) ρ(x, y).

In view of assumptions (2), (3), (4) and (5), the function R = R(t, x, y) is bounded
and has a support embedded in {t ∈ [−1, 1]}. Therefore t �→ R(t, x, y) is inte-
grable for a.e. (x, y) ∈ R

2D . Then using Lemma 3.1 of (24) we have

S(x, y) =
∫

R

R(t, x, y) dt = lim
L→∞

∫ L

−L

∫ L

−L
R(t − σ, x, y) dt dσ a.e.
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= lim
L→∞

E(UL (x)UL (y)) a.e. (32)

with UL (x) = 1√
L

∫ L

−L
U (t, x). It follows that

S(x, x) = lim
L→∞

E(UL (x)2) ≥ 0 a.e.

S(x, x) + S(y, y) − 2S(x, y) = lim
L→∞

E((UL (x) − UL (y))2) ≥ 0 a.e. (33)

We will see that the last inequality can be interpreted as a dissipativeness property
of equation (31). The following result is also useful.

Lemma 4.1. For any symmetric, trace class operator D on L2(RD) whose kernel
is ρ = ρ(x, y), let S(D) be the operator whose kernel is (2π )D S(x, y) ρ(x, y).
Then, S is linear and continuous on the space of symmetric, trace class operators
and preserves nonnegativeness.

The function S = S(x, y) is bounded, real and symmetric with respect to
(x, y), then the only point to check is the nonnegativeness of S(D) when D ≥ 0.
We have for any ϕ ∈ L2(RD)

< ϕ,S(D)ϕ > = (2π )D
∫

R2D

ϕ(x)S(x, y)ρ(x, y)ϕ(y) dx dy

= (2π )D lim
L→∞

E

( ∫
R2D

ϕ(x)UL (x) ρ(x, y)UL (y)ϕ(y) dx dy
)

= (2π )D lim
L→∞

E(< ULϕ,DULϕ >) ≥ 0

where the second equality has been obtained by using the Dominated Convergence
Theorem. This ends the proof of the Lemma.

Let T be the multiplication operator of L(L2(RD)) given by

T ϕ(x) = (2π )D S(x, x)ϕ(x), f or a.e. x ∈ R
D, ∀ϕ ∈ L2(RD).

Let H (t) be the self–adjoint operator H (t) = − 1
2� · +V (t)· and D0 be the density

matrix corresponding to the kernel ρ0. It results from (31) that

Proposition 4.3. Under the same assumptions as in Theorem 4.1, the density
matrix D0 corresponding to the limit kernel ρ0 solves the Von Neuman-Boltzmann
equation

d

dt
D0(t) = −i[H (t),D0(t)] + S(D0(t)) − 1

2
(T D0(t) + D0(t)T ) (34)

for all t > 0. This equation generates a continuous nonautonomous group
on the space of symmetric trace class operators. It preserves the trace and
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nonnegativeness. Moreover it is dissipative for the norm ‖D‖2 = √
tr(DD∗) in

the sense that ‖D0(t)‖2 is a nonincreasing function of time.

The first assertion is obvious because the operator D �→ S(D) − 1
2 (T D +

DT ) is a bounded linear operator on the space of symmetric trace class operators
and we have classically that the Von Neuman operatorD �→ −i[H (t),D] generates
a continuous non autonomous group. Concerning the trace conservation we have

d

dt
tr(D(t)) = tr

(
S(D(t)) − 1

2
(T D(t) + D(t)T )

)

and we easily check using the kernels of the operators that for any D tr(S(D) −
1
2 (T D + DT )) = 0.

It remains to prove that D(t) remains nonnegative if D(0) ≥ 0. Let us intro-
duce the group Gt,s generated by

D �→ −i[H (t),D] − 1

2
(T D + DT ).

We first prove that this group preserves nonnegativeness. Let DI be a trace class,
symmetric nonnegative operator. Then there is an orthonormal system (ϕn)n∈N

of L2(RD) and a real sequence (λn)n∈N satisfying λn ≥ 0,
∑

n∈N
λn < ∞ such

that DI = ∑
n∈N

λn ϕn ⊗ ϕn . Let (ψn(t))n∈N be the solutions of the Schrödinger
equation

i
d

dt
ψn(t) = H (t)ψn(t) + iT ψn(t), ψn(s) = ϕn.

Then, it is easy to check that Gt,sDI = ∑
n∈N

λnψn(t) ⊗ ψn(t), therefore Gt,sDI

is also nonnegative. Since the operator D �→ S(D) is Lipschitz continuous, the
solution D(t) of equation (34) is given by the limit of the sequence

D1(t) = Gt,0D(0),

Dn+1(t) = Gt,0D(0) +
∫ t

0
Gt,sS(Dn(s)) ds.

Using Lemma 4.1 and the fact that Gt,s preserves nonnegativeness, we obtain that
Dn(t) is a sequence of nonnegative operators if D(0) is a trace class symmetric
nonnegative operator. It results that the limit D(t) is also nonnegative.

The last point concerns dissipativeness. We compute

d

dt
D(t)2 = −i([H (t),D(t)]D(t) + D(t)[H (t),D(t)]) + E(t) = E(t)

with E(t) = D(t)
(
S(D(t)) − 1

2
(T D(t) + D(t)T )

)

+
(
S(D(t)) − 1

2
(T D(t) + D(t)T )

)
D(t).
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The kernel of the operator E(t) is given by

− (2π )D

2

∫
RD

ρ(t, x, z)(S(z, z) + S(y, y) − 2S(z, y))ρ(t, z, y)

+ ρ(t, x, z)(S(z, z) + S(x, x) − 2S(x, y))ρ(t, z, y) dz.

Therefore

d

dt
‖D(t)‖2

2 = d

dt
tr(D(t)2) = tr(E(t))

= − (2π )D

2

∫
R2D

ρ(t, x, z)(S(z, z) + S(x, x) − 2S(z, x))ρ(t, z, x) dz dx

= − (2π )D

2

∫
R2D

(S(z, z) + S(x, x) − 2S(z, x)) |ρ(t, z, x)|2 dz dx ≤ 0,

being the nonpositiveness due to (4.1). This ends the proof.

Remark 4.1. The first idea for proving Proposition 4.3 is trying to put (34) in
the Lindblad form, cf (1,19). It consists of finding operators (Un)n≥1 such that

S(D) =
∞∑

n=1

UnDU ∗
n , T =

∞∑
n=1

U ∗
n Un. (35)

The evolution equations in Lindblad form are dissipative in the space of trace–class
operators and their quantum entropy grows, which is related to the irreversibility
properties of the evolution equation. Lindblad’s form also implies the conservation
of positiveness, even gives rise to complete positiveness of the evolution semigroup.

This seem to be more complicated in our context than tryng to give a direct
proof of Proposition 4.1. However, another possibility is to obtain S and T as a
limit of operators of Lindblad form where the sums are replaced by expectations.
Actually, using (32) we have

S(D) = lim
L→∞

E(ULDUL ), T = lim
L→∞

E(UL
2),

where UL is the self adjoint random operator corresponding to the multiplication
by the real function UL . But the proofs in this approach are not simpler.

5. PROOFS

The rest of this paper is devoted to the proof of Theorem 4.1. From now on
‖.‖ denotes the norm of L2(R2D) and τ is assumed to satisfy 0 < τ ≤ 1. We also
use the notation O(β) for L2-functions which are bounded in L2(R2D) by C β

where C is a positive constant which is uniform with respect to the time t , the
parameter τ and the random variable.
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One of the main ingredients in the determination of the asymptotic behavior
of wτ is the Duhamel formula. We first introduce the unitary group on L2(RD),
(St )t∈R, generated by the infinitesimal generator ξ.∇x :

∀η ∈ L2(RD), St (η)(x, ξ ) = η(x − t ξ, ξ ), x ∈ R
D, ξ ∈ R

D. (36)

If wτ is a solution of (23), (24) we obtain

wτ (t) = Ssw
τ (t − s) +

∫ s

0
Sσ θτ

t−σ (wτ (t − σ )) dσ. (37)

In particular, wτ can be obtained as the fixed point of the map

w �→ Stw
I +

∫ t

0
Sσ θτ

t−σ (w(t − σ )) dσ.

If the initial data is assumed to be independent upon the random potential, this
formula shows that wτ (t) depends only on V τ

s for s ∈ [0, t] if t ≥ 0 (or for s ∈ [t, 0]
if t ≤ 0). In view of the assumption (4), it follows

Lemma 5.2. Assume that wI is a deterministic function. Then, for all x, ξ, y ∈
R

D, t ≥ 0 and s ≥ t + τ , the functions wτ (t, x, ξ ) and V τ
s (y) are independent

random variables.

We also have

Lemma 5.3. Assume that V τ
t (y) and η(x, ξ ) are independent random variables

for all y, x, ξ ∈ R
D. Then E(θτ

t (η)) = θ [V ] (E(η)).

Last lemma is a direct consequence of the definition (18) and also of (1) and
(3). Also, a combination of the Duhamel formula (37) together with (20) and (16)
allows to obtain the following useful estimate

‖wτ (t) − Ssw
τ (t − s)‖ ≤ 2 C0 C∞

(
1 + 1√

τ

)
s,

which implies

Ssw
τ (t − s) = wτ (t) + O

(
s√
τ

)
. (38)

We are now ready to use the strategy of (24) based on the use of the Duhamel
formula and the time mixing properties. Taking the expectation of (23) we get

∂

∂t
E(wτ ) + ξ.∇xE(wτ ) = E(θτ

t (wτ )), t ∈ R, x ∈ R
D, ξ ∈ R

D.
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Thanks to Lemmas 5.2 and 5.3, we have for t ≥ τ

E(θτ
t wτ (t)) = E(θτ

t Sτw
τ (t − τ )) +

∫ τ

0
E(θτ

t Sσ θτ
t−σ wτ (t − σ )) dσ

= θ [V (t)](E(Sτw
τ (t − τ ))) +

∫ 1

0
E(τ θτ

t Sστ θ
τ
t−στw

τ (t − στ )) dσ.

We first remark that due to (38) we have

Sτw
τ (t − τ ) = wτ (t) + O(

√
τ ), wτ (t − στ ) = S(2−σ )τw(t − 2τ ) + O(

√
τ ).

The operators θ [V (t)] and τ θτ
t Sστ θ

τ
t−στ are of order 1 in L(L2(RD)). Therefore,

we get for t ≥ 2τ

E(θτ
t wτ (t)) = θ [V (t)](E(wτ (t)))

+
∫ 1

0
E(τ θ [U τ (t)]Sστ θ [U τ (t − στ )]S(2−σ )τw

τ (t − 2τ )) dσ + O(
√

τ ).

For the second term we use again Lemma 5.2 to obtain

E(θτ
t wτ (t)) = θ [V (t)](E(wτ (t)))

+
∫ 1

0
E(τ θ [U τ (t)]Sστ θ [U τ (t − στ )]S−στ )E(S2τw

τ (t − 2τ )) dσ + O(
√

τ )

= θ [V (t)](E(wτ (t)))

+
∫ 1

0
E(τ θ [U τ (t)]Sστ θ [U τ (t − στ )]S−στ ) dσE(wτ (t)) + O(

√
τ ).

We summarize these results in the following

Lemma 5.4. Let wτ be the Wigner functions defined in Propositions 3.1 and 3.2.
Then, we have for t ≥ 2τ

∂

∂t
E(wτ (t)) + ξ.∇xE(wτ (t)) = θ [V (t)](E(wτ (t)))

+ Lτ
t (E(wτ (t))) + O(

√
τ ), (39)

where the deterministic operator Lτ
t , defined by

Lτ
t =

∫ 1

0
E(τ θ [U τ (t)]Sστ θ [U τ (t − στ )]S−στ ) dσ (40)

on L2(R2D) is uniformly bounded.

The first consequence of (39) is that the time derivative of E(wτ (t)) is uni-
formly bounded with respect to τ and t ∈ [2τ,∞), in the distributional sense. Let η
be a test function and let us check the equicontinuity of

∫
R2D E(wτ (t + 2τ ))η dx dξ
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on t ∈ [0,∞). We have∫
R2D

E(wτ (t + 2τ ))η dx dξ =
∫

R2D

E(S2τw
τ (t))η dx dξ + O(

√
τ )

=
∫

R2D

E(wτ (t))S−2τ η dx dξ + O(
√

τ )

=
∫

R2D

E(wτ (t))η dx dξ + O(
√

τ ).

This shows that
∫

R2D E(wτ (t))η dx dξ is equicontinuous on [0,∞). Then, by the
Ascoli theorem there exist subsequences τk → 0 (again denoted by τ in the sequel
for the sake of legibility) such that for any T > 0

E(wτ (t)) → w0(t) in C0([0, T ]; L2(R2D) − weak). (41)

We refer to (17,24) for more details.
In order to pass to the limit in (39), there remains to compute the limit of

Lτ
t (E(wτ (t))). Using that θτ

t is a skew operator (Proposition 3.0) and that the
adjoint of St is S−t , the adjoint (Lτ

t )∗ is given by

(Lτ
t )∗ =

∫ 1

0
E(τ Sστ θ [U τ (t − στ )]S−στ θ [U τ (t)]) dσ. (42)

Therefore, there only remains to obtain the L2(R2D) strong convergence of
(Lτ

t )∗(η) for any test function η. By using (21) a short computation leads to

Sστ θ [U τ (t − στ )]S−στ θ [U τ (t)](η)(x, ξ )

= −
∑

ε1,ε2=±1

ε1ε2

(2π )2D

∫
R2D

{
Vτ

t−στ (q)Vτ
t (p)

× η
(

x + ε2τσ
q

2
, ξ + ε1

p

2
+ ε2

q

2

)
eix ·(p+q)e−iε2τσq·(ξ− p

2 )
}

dp dq.

Then, the identity (22) yields

(Lτ
t )∗(η) = −

∑
ε1,ε2=±1

ε1ε2

(2π )D

∫
RD×RD

∫ 1

0
R̂(σ, p, q) η

(
x + ε2τσ

q

2
, ξ

+ ε1 p + ε2q

2

)
eix ·(p+q)e−iε2τσq·(ξ− p

2 ) dσ dp dq (43)

or equivalently

(Lτ
t )∗(η) = −

∑
ε1,ε2=±1

ε1ε2

(2π )D

∫
RD×RD

∫ 1

0
R̂(σ, p, q) dσ

× η

(
x, ξ + ε1 p + ε2q

2

)
eix ·(p+q) dp dq + r1 + r2, (44)
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where

r1 = −
∑

ε1,ε2=±1

ε1ε2

(2π )D

∫
RD×RD

∫ 1

0
R̂(σ, p, q) η

(
x + ε2τσ

q

2
ξ + ε1 p + ε2q

2

)

× eix ·(p+q)
[
e−iε2τσq·(ξ−p/2) − 1

]
dσ dp dq

and

r2 = −
∑

ε1,ε2=±1

ε1ε2

(2π )D

∫
RD×RD

∫ 1

0
R̂(σ, p, q) eix ·(p+q)

×
∫ 1

0
∇xη

(
x + ε2sτσ

q

2
, ξ + ε1 p + ε2q

2

)
·
(
ε2τσ

q

2

)
ds dσ dp dq.

The remainders r1, r2 can be estimated as follows:

|r1| ≤
∑

ε1,ε2=±1

1

(2π )D

∫
RD×RD

∫ 1

0
|R̂(σ, p, q)|

∣∣∣∣η
(

x + ε2τσ
q

2
, ξ + ε1 p + ε2q

2

)∣∣∣∣
× τ |q| |ξ + p

2
| dσ dp dq

≤
∑

ε1,ε2=±1

τ

(2π )D

∫
RD×RD

∫ 1

0
|R̂(σ, p, q)|

∣∣∣∣η
(

x + ε2τσ
q

2
, ξ + ε1 p + ε2q

2

)∣∣∣∣

×
∣∣∣∣ξ + ε1 p + ε2q

2

∣∣∣∣ |q|
∣∣∣∣ p − ε1 p − ε2q

2

∣∣∣∣ dσ dp dq.

Now, taking L2 norms we have

‖r1‖ ≤ Cτ‖ |ξ | η ‖
∫

RD×RD

∫ 1

0
|R̂(σ, p, q)| |q|(|p| + |q|) dσ dp dq.

Similarly, for r2 we obtain

‖r2‖ ≤ Cτ‖∇xη‖
∫

RD×RD

∫ 1

0
|R̂(σ, p, q)| |q| dσ dp dq.

Therefore, using assumption (7) and (44) we find

(Lτ
t )∗(η) = 1

(2π )D

∫
RD×RD

∫ 1

0
R̂(σ, p, q) dσ

(
η

(
x, ξ + p − q

2

)

+η

(
x, ξ − p − q

2

))
eix ·(p+q) dp dq
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− 1

(2π )D

∫
RD×RD

∫ 1

0
R̂(σ, p, q) dσ

(
η

(
x, ξ + p + q

2

)

+η

(
x, ξ − p + q

2

))
eix ·(p+q) dp dq + O(τ ).

Playing with the symmetries p � q and using
R̂(σ, q, p) = R̂(−σ, p, q) we get

(Lτ
t )∗(η) = 1

2(2π )D

∫
RD×RD

∫ 1

0
(R̂(σ, p, q) + R̂(−σ, p, q)) dσ eix ·(p+q)

×
(

η

(
x, ξ + p − q

2

)
− η

(
x, ξ − p − q

2

)
− η

(
x, ξ + p + q

2

)

+ η

(
x, ξ − p + q

2

))
dp dq + O(τ )

= 1

2(2π )D

∫
RD×RD

Ŝ(p, q)eix ·(p+q)

(
η

(
x, ξ + p − q

2

)
− η

(
x, ξ − p − q

2

)

− η

(
x, ξ + p + q

2

)
+ η

(
x, ξ − p + q

2

))
dp dq + O(τ )

Making the change of variables (p, q) �→ (−p,−q) in the second and fourth

terms and using Ŝ(−p,−q) = Ŝ(p, q) yields

(Lτ
t )∗(η) = 1

(2π )D

∫
RD×RD

�(
Ŝ(p, q)eix ·(p+q)

)

×
(

η

(
x, ξ + p − q

2

)
− η

(
x, ξ + p + q

2

))
dp dq + O(τ ),

where we denoted by � the real part of the complex quantity.
We can rewrite Lτ

t as follows

(Lτ
t )∗(η) = 1

(2π )D

∫
RD×RD

�(
Ŝ(p + q, q)eix ·(p+2q)

)
η

(
x, ξ + p

2

)
dp dq

− 1

(2π )D

∫
RD×RD

�(
Ŝ(p − q, q) eix ·p) η

(
x, ξ + p

2

)
dp dq + O(τ )

= 2D

(2π )D

∫
RD

�
(∫

RD

Ŝ(2(ξ ′ − ξ ) + q, q)eix ·(2(ξ ′−ξ )+2q) dq

)
η(x, ξ ′) dξ ′

− 2D

(2π )D

∫
RD

�
(∫

RD

Ŝ(2(ξ ′ − ξ ) − q, q)eix ·2(ξ ′−ξ ) dq

)
η(x, ξ ′) dξ ′ + O(τ ),
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which gives

(Lτ
t )∗(η) =

∫
RD

(K2(x, ξ ′ − ξ ) − K1(x, ξ ′ − ξ )) η(x, ξ ′) dξ ′ + O(τ ),

where

K1(x, p) = 2D

(2π )D
�

(∫
RD

Ŝ(2p − q, q) eix ·2p dq

)
(45)

= 2D

(2π )D
�

(∫
RD

∫
R2D

S(y, z) e−i2p·yeiq·ye−iq·zeix ·2p dy dz dq

)

= 2D

(2π )D
�

(∫
RD

∫
R2D

S(y, y + z) e−i2p·ye−iq·zeix ·2p dy dz dq

)

= 2D�
(∫

RD

S(y, y) e−i2p·yeix ·2p dy

)

=
∫

RD

S
(

x + y

2
, x + y

2

)
cos (p · y) dy, (46)

K2(x, p) = 2D

(2π )D
�

(∫
RD

Ŝ(2p + q, q) eix ·(2p+2q) dq

)
(47)

= 2D

(2π )D
�

(∫
RD

∫
R2D

S(y, z) e−iy·(2p+q)e−i z·qeix ·(2p+2q) dy dz dq

)

= 2D

(2π )D
�

(∫
RD

∫
R2D

S(y, z − y) e−i2p·(y−x)e−i z·q dy dzei2x ·q) dq

)

= 2D�
(∫

RD

∫
R2D

S(y, 2x − y) e−i2p·(y−x) dy

)

= �
(∫

RD

∫
R2D

S(x + y

2
, x − y

2
) e−i p·y dy

)

=
∫

RD

∫
R2D

S
(

x + y

2
, x − y

2

)
cos (p · y) dy

There remains to compute K1 and K2 in the particular case R(t, x, y) =
Q(t, x − y). We start from (45) and use that Ŝ(p, q) =
(2π )D

∫ 1

−1
Q̂(σ, p) dσ δ(q),

K1(x, p) = 2D�
(∫

RD

∫ 1

−1
Q̂(σ, 2p − q) dσδ(2p) ei2p·x dq

)

= �
∫

RD

∫ 1

−1
Q̂(σ, q) dσ ) dqδ(p) = �δ(p),
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and from (47)

K2(x, p) = 2D�
(∫

RD

∫ 1

−1
Q̂(σ, 2p + q) dσδ(2p + 2q) ei2(p+q)·x dq

)

=
∫ 1

−1
Q̂(σ, p) dσ = k(p)
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aléatoires, Thése Université de Nice-Sophia Antipolis, Novembre 2002.

5. A. O. Caldeira and A. J. Leggett, Path integral approach to quantum Brownian motion, Physica A,
121:587–616 (1983).
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13. D. Dürr, S. Goldstein and J. L. Lebowitz, Asymptotic motion of a classical particle in a random

potential in two dimensions: Landau model, Comm. Math. Phys. 113:209–230 (1987).
14. L. Erdös and H. T. Yau, Linear Boltzmann Equation as the Weak Coupling Limit of a Random

Schrödinger Equation, Comm. Pure Appl. Math. LIII:667–735 (2000).
15. P. Gérard, Mesures semi-classiques et ondes de Bloch. Sem. Ecole Polytechnique XVI:1–19 (1991).
16. P. Gérard, P. A. Markowich, N. J. Mauser and F. Poupaud, Homogenization limits and Wigner

transforms, Comm. Pure Appl. Math. L:323–379 (1997).
17. T. Goudon and F. Poupaud, On the modeling of the transport of particles in turbulent flows, Math.

Model. Num. Anal. (M2AN) 38:673–690 (2004).
18. T. Ho, L. Landau and A. Wilkins, On the weak coupling limit for a Fermi gas in a random potential,

Rev. Math. Phys. 5:209–298 (1993).
19. G. Lindblad, On the generators of quantum dynamical semigroups, Comm. Math. Phys. 48:119–130

(1976).
20. P. L. Lions and T. Paul, Sur les mesures de Wigner, Revista Mat. Iberoamericana 9:553–618

(1993).



436 Bechouche, Poupaud, and Soler

21. J. L. López, Nonlinear Ginzburg-Landau type approach to quantum dissipation, Phys. Rev. E
69:026110 (2004).

22. P. A. Markowich and N. J. Mauser, The classical limit of a self-consistent quantum-Vlasov equation
in 3-D, Math. Meth. Mod. Appl. Sci. 3:109–124 (1993).

23. A. Peraiah, An Introduction to Radiative Transfer. Methods and Applications in Astrophysics,
Cambridge, 2001.

24. F. Poupaud and A. Vasseur, Classical and quantum transport in random media, J. Math. Pure Appli.
82:711–748 (2003).

25. H. Spohn, Derivation of the transport equation for electrons moving through random impurities,
J. Stat. Phys. 17:385–412 (1977).

26. E. Wigner, On the quantum correction for thermodynamic equilibrium Phys. Rev. 40:749–759
(1932).


